Mannich Bases as Synthetic Intermediates: Convenient Synthesis of Functionalized 1,2,4-Triazepines, 1,4-Diazepines and 1,5-Diazocines

Elsayed M. Afsah, Eman M. Keshk, Abdel-Rahman H. Abdel-Rahman, and Najla F. Jomah Chemistry Department, Faculty of Science, Mansoura University, ET-35516, Mansoura, Egypt Reprint requests to Prof. Dr. E. M. Afsah. E-mail: emafsah@yahoo.com

Z. Naturforsch. 2011, 66b, 577 - 584; received March 25, 2011

Transamination between the ketonic Mannich bases 1a, b and primary arylamines gave a series of ketonic sec-Mannich bases 2a-h. A variety of tetrahydro-1,2,4-triazepines 3a-f have been synthesized by treating the arylhydrazones of 2 with formaldehyde. A similar reaction with the benzenesulfonylhydrazone of 2b afforded 4. The 3-styryl-2H-1,2,4-triazepine 5 was obtained from the phenylhydrazone of 2a and cinnamaldehyde. Treatment of arylhydrazones of the 4-methoxystyryl keto base 7 with formaldehyde and cinnamaldehyde afforded the 3,4,5,6-tetrahydro-2H-1,2,4-triazepines 8a, b. Mannich reaction with 4-(p-hydroxyphenyl)-tetrahydro-1,2,4-triazepine 3d afforded the Mannich bases 9, 10 and 11.

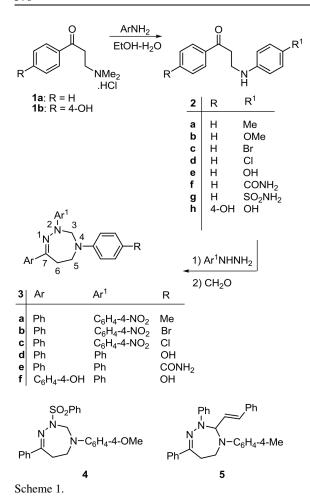
The reaction of 1b with *o*-phenylenediamine leads to the 1,5-benzodiazepine 13. The new tetrahydro-1,4-diazepine and tetrahydro-1,5-diazocine Mannich bases 15 and 17 were obtained from 1b and ethylenediamine or 1,3-diaminopropane, respectively. The bi(piperidine) derivative 19 was obtained from 1a and 1,3-diaminopropane.

Key words: Mannich Bases, 1,2,4-Triazepines, 1,4-Diazepines, 1,5-Diazocines

Introduction

Mannich bases have been used extensively in the synthesis of heterocyclic systems [1-6] and of heterocycles having a potential basic side chain of alkaloidal nature [7-13]. In particular, ketonic tert-Mannich bases and their quaternary salts have been employed frequently as potential intermediates in the synthesis of a multitude of heterocycles of pharmaceutical interest, such as pyrazolines [9-11], pyridines [3], piperidines [14–16], 1,5-benzo- or 1,5-hetero-diazepines [16-19], and quinolines [20]. The use of sec-Mannich bases as synthetic intermediates has been reported in a limited number of cases for the synthesis of pyrimidines [21], quinolines [22, 23] and isoquinolines [24, 25], and recently we reported [16] the synthesis of the 2H-1,2,4-triazepine ring system starting with ketonic sec-amine bases.

In connection with our studies in the area of Mannich bases [4,11–13,16,26] and in view of the widespread and increasing interest in the chemistry and biological activities of Mannich bases and related compounds, the synthetic potential of ketonic *sec*-Mannich bases as intermediates in heterocyclic synthesis was further investigated. We report here on the synthesis of some new functionalized tetrahydro-1,2,4-tri-


azepines, tetrahydro-1,4-diazepines, tetrahydro-1,5-diazocines, and bi(piperidines), which possess considerable synthetic and pharmaceutical interest.

Results and Discussion

A series of ketonic sec-Mannich bases 2a - h was prepared by transamination reaction between the ketonic tert-Mannich base hydrochloride 1a or 1b and the appropriate primary aromatic amine, according to an earlier report [27]. Compounds 2f - h have been reported for the first time by this study. It was found that treatment of the ketonic sec-amines of the type 2 with p-nitrophenylhydrazine or phenylhydrazine, and subsequently with formaldehyde under mild conditions, afforded a series of 3,4,5,6-tetrahydro-2,4,7-triaryl-2H-1,2,4-triazepines (3a - f) with different substituents on the 1,2,4-triazepine ring (Scheme 1).

In line with this, the 2-benzenesulfonyl-tetrahydro-1,2,4-triazepine derivative **4** was obtained by treating **2b** with benzenesulfonyl hydrazide and formaldehyde. The synthesis of the 3-styryl-tetrahydro-1,2,4-triazepine **5** was achieved by treating the phenylhydrazone of **2a** with cinnamaldehyde. A practical advantage of the reactions leading to the 3,4,5,6-tetrahydro-2H-1,2,4-triazepine derivatives **3** – **5** is that it is

 $0932-0776 \,/\, 11 \,/\, 0600-0577 \,\$\, 06.00 \, \textcircled{c} \,\, 2011 \,\, Verlag \,\, der \,\, Zeitschrift \,\, für \,\, Naturforschung, \,\, Tübingen \,\cdot\, http://znaturforsch.com \,\, Naturforschung, \,\, Tübingen \,\cdot\, http://znaturforsch.com \,\, Naturforschung, \,\, Natu$

often unnecessary to isolate the arylhydrazone intermediates of the ketonic sec-Mannich bases. The mass and 1H NMR spectra of compounds $\mathbf{3-5}$ are consistent with their structures. The main characteristic features of the 1H NMR spectrum of $\mathbf{3a}$ are a singlet at $\delta=5.35$ assignable to 3-H_2 and two triplets at $\delta=3.65$ (5-H₂) and 3.38 (6-H₂), and a singlet at $\delta=2.33$ (Ar-CH₃). The mass spectra of $\mathbf{3a-f}$, $\mathbf{4}$ and $\mathbf{5}$ contain peaks of the respective molecular ions, and fragmentation patterns which supported their structures. As an example the fragmentation pattern of $\mathbf{3c}$ is depicted in Scheme 2.

The scope of the above reaction has been broadened by treatment of the arylhydrazones derived from 1-(*p*-anisyl)-5-(*p*-tolylamino)-1-penten-3-one (7) with formaldehyde or cinnamaldehyde to afford 7-(4-methoxystyryl)-tetrahydro-2-phenyl-4-(*p*-tolyl)-2*H*-1,2,4-tiazepine (**8a**) and 7-(4-methoxystyryl)-3-styryl-tetrahydro-2*H*-1,2,4-triazepine (**8b**), re-

Scheme 2.

spectively (Scheme 3). The analytical and spectral data of **8a** and **8b** are consistent with their structures.

The Mannich reaction of the 4-(*p*-hydroxyphenyl)-tetrahydro-2*H*-1,2,4-triazepine (**3d**) is of particular interest, because it provides access to tetrahydro-2*H*-1,2,4-triazepines having a phenolic Mannich base as a structural unit. This has been achieved by treating **3d** with dimethylamine or piperidine and formaldehyde to

Scheme 3.

Scheme 4.

give the mono-(Mannich base) 9 or the bis-(Mannich bases) 10 and 11 depending on the molar ratio of the reactants (Scheme 4).

The structures of compounds 9-11 are supported by analytical and spectral data. The 1H NMR specrum of 9 displays four singlets at $\delta = 2.38$ (N Me_2), 3.67 (Ar-C H_2 N), 5.17 (3-H₂), and 6.71 (ArOH), and two triplets at $\delta = 3.62$ (5-H₂) and 3.34 (6-H₂). The mass spectra of 9, 10 and 11 revealed molecular ion peaks at m/z = 400, 458 [M+1]⁺ and 537, respectively, and fragmentation patterns which supported their structures.

In connection with the present study, the transamination reaction between **1b** and *o*-phenylenediamine afforded the 2,3-dihydro-4-(*p*-hydroxyphenyl)-1*H*-1,5-benzodiazepine **13**. It is believed that the initially formed intermediate **12** readily undergoes cyclodehydration to give **13**, as confirmed by analytical and spectral data (Scheme 5).

On the other hand, the reaction of 1b with ethylene-diamine led to the formation of 2,3,6,7-tetrahydro-1- $(\beta$ -4-hydroxybenzoylethyl)-5-(4-hydroxyphenyl)-1H-1,4-diazepine (15) rather than the tetrahydro-1,4-diazepine 14, which would be the expected product. Obviously, 15 was formed via the intermediacy of the non-isolable tetrahydro-1,4-diazepine 14, resulting from the cyclocondensation reaction of ethylene-diamine with 1b, which readily reacts further with a second molecule of 1b via transamination to afford the

new Mannich base **15**. The reaction of **1b** with 1,3-diaminopropane proceeded quite analogously to afford 3,4,7,8-tetrahydro-1-(β -4-hydroxybenzoylethyl)-6-(4-hydroxyphenyl)-2H-1,5-diazocine (**17**). The reaction of **1b** with ethylenediamine and 1,3-diaminopropane is of particular interest, because it offers access with good yields to the new tetrahydro-1,4-diazepine and tetrahydro-1,5-diazocine Mannich bases **15** and **17**, respectively.

The mass spectrum of 17 exhibited a molecular ion peak at m/z = 352 [M]⁺ and a peak at m/z = 110 due to the tetrahydro-1,5-diazocine unit. The side chain can be identified by two peaks at m/z = 121 and 149 (Scheme 6). The formation of 15 and 17 is in line with our recent report [16] on the reaction of bis-ketonic Mannich bases with ethylenediamine.

On the other hand, the reaction of **1a** with 1,3-diaminopropane in a molar ratio of 4:1 takes a different course. The reaction proceeded smoothly to

o-phenylene-diamine EtOH - AcONa
$$H_2NH_2$$
 EtOH - H_2O NH_2 NH_2 EtOH - H_2O NH_2 NH_2 EtOH - H_2O NH_2 NH_2

19

Scheme 5.

17:
$$m/z = 352$$
 (1) M⁺
 $m/z = 93$ (11)

 $m/z = 149$ (12)

(a)

N - CH₂ · CH₂ CO — OH

 $m/z = 121$ (6)

Scheme 6.

give 1,3-bis(3-benzoyl-4-hydroxy-4-phenylpiperidin-1-yl)propane (19), *via* the intermediacy of N,N,N',N'-tetra(β -benzoylethyl)-1,3-diaminopropane (18), which undergoes intramolecular aldolization to give 19 as the end product. The identity of the product as the bi-(piperidinol) 19, and not the isomeric tetraketo base 18, was shown by the IR spectrum which displayed a strong OH band at 3421 cm⁻¹ as well as the absorption band at 1629 cm⁻¹ for C=O. The tendency of primary alkyl amines to undergo double N-alkylation with ketonic Mannich bases, and subsequent aldolization of the resulting bis-(ketonic Mannich bases) to N-alkyl piperidinols, has been previously reported [14–16]. Attempts to isolate the intermediate tetraketo base 18 were unsuccessful due to the ease with which such bases undergo aldolization even at r. t.

Experimental Section

All melting points (uncorrected) were determined on a Gallenkamp electric melting point apparatus. Elemental microanalyses were carried out at the Microanalytical Unit, Faculty of Science, Cairo University. Infrared spectra were measured on a Mattson 5000 FTIR spectrometer. ¹H and ¹³C NMR data were obtained in CDCl₃ or [D₆]DMSO solution on a Varian XL 200 MHz instrument using TMS as internal standard. Chemical shifts are reported in ppm (δ) downfield from internal TMS. Mass spectra were recorded on a GC-MS QP-1000 EX Shimadzu instrument. The course of the reaction and the purity of the synthesized compounds were monitored by TLC using EM science silica gel-coated plates with visualization by irradiation with an ultraviolet lamp. Compounds 3f, 8b, 17, and 19 are of limited solubility in common ¹H NMR solvents. Compounds **1b** [28], 2a - d [27], 2c and e [16], 3d [16], and 6 [9] were prepared as previously described.

β -Arylaminopropiophenones 2f-h

A mixture of **1a** (2.13 g, 10 mmol) or **1b** (2.29 g, 10 mmol) and the appropriate amine (10 mmol) in

50 % aqueous ethanol (80 mL) was refluxed for 90 min. The product obtained on cooling was filtered and crystallized from ethanol to give $2\mathbf{f} - \mathbf{h}$.

4-(3-Oxo-3-phenylpropylamino)benzamide (2f)

M. p. 198 °C. Yield 75 % (colorless crystals). – IR (KBr): v = 3399 (NH), 3360 (CONH), 1666 (CO), 1592, 1388, 1326, 1060 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 2.46$ (t, 2H, COCH₂CH₂N), 3.31 (t, 2H, COCH₂CH₂N), 4.40 (s, 1H, ArN*H*), 7.19 – 7.73 (m, 9H, aromatic), 8.11 (br. s, 2H, CON*H*₂). – MS (EI, 70 eV): m/z (%) = 268 (18) [M]⁺, 267 (2) [M–1]⁺, 149 (100) [CH₂NH-C₆H₄-CONH₂]⁺, 136 (7), 133 (3), 132 (12), 120 (11), 105 (37), 77 (32). – C₁₆H₁₆N₂O₂ (268.31): calcd. C 71.62, H 6.01, N 10.44; found C 71.59, H 5.58, N 10.21.

4-(3-Oxo-3-phenylpropylamino)benzenesulfonamide (2g)

M. p. 220 °C. Yield 60 % (colorless crystals). – IR (KBr): v = 3410 (NH), 3380 (SO₂NH), 1671 (CO), 1469, 1330, 1226, 1145 cm⁻¹. – MS (EI, 70 eV): m/z (%) = 304 (14) [M]⁺, 305 (3) [M+1]⁺, 303 (2) [M-1]⁺, 185 (100) [CH₂NH-C₆H₄-SO₂NH₂]⁺, 172 (10), 156 (6), 133 (4), 119 (10) [PhCOCH₂]⁺, 105 (56) [PhCO]⁺, 77 (39). – C₁₅H₁₆N₂O₃S (304.36): calcd. C 59.19, H 5.30, N 9.20; found C 59.09, H 5.21, N 9.11.

3-(4-Hydroxyphenylamino)-1-(4-hydroxyphenyl)propan-1-one (2h)

M. p. 185 °C. Yield 57 % (yellow crystals). – IR (KBr): v = 3439 (OH), 3366 (NH), 1664 (CO), 1492, 1338, 1226, 1120 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 2.34$ (t, 2H, COCH₂CH₂N), 3.42 (t, 2H, COCH₂CH₂N), 4.46 (s, 1H, ArN*H*), 7.11 – 7.82 (m, 8H, aromatic), 11.77 (s, 2H, 2×O*H*). – MS (EI, 70 eV): m/z (%) = 257 (10) [M]⁺, 148 (37) [HO-C₆H₄-COCH=CH₂]⁺, 121 (100) [HO-C₆H₄-CO]⁺, 109 (43), 93 (25). – C₁₅H₁₅NO₃ (257.28): calcd. C 70.02, H 5.88, N 5.44; found C 69.95, H 5.82, N 5.31.

3,4,5,6-Tetrahydro-2,4,7-triaryl-2H-1,2,4-triazepines 3a-f

A solution of the appropriate β -(arylamino)propiophenone $(2\mathbf{a}-\mathbf{h})$ (5 mmol) and p-nitrophenylhydrazine (0.77 g, 5 mmol) or phenylhydrazine (0.54 g, 5 mmol) in ethanol (30 mL) was heated on a steam bath for 20 min, then formalin (37 %, 0.6 mL, 8 mmol) and acetic acid (0.1 mL) were added. The reaction mixture was heated for 5 min, and the product obtained on cooling was filtered and crystallized from the appropriate solvent to give $3\mathbf{a}-\mathbf{f}$.

3,4,5,6-Tetrahydro-2-(p-nitrophenyl)-7-phenyl-4-p-tolyl-2H-1,2,4-triazepine (**3a**)

M. p. 196 °C (ethanol). Yield 71 % (yellow crystals). – IR (KBr): v = 1610 (C=N), 1520, 1365, 1238, 1210,

870 cm⁻¹. – ¹H NMR (CDCl₃): δ = 2.33 (s, 3H, ArMe), 3.38 (t, 2H, 6- H_2), 3.65 (t, 2H, 5- H_2), 5.35 (s, 2H, 3- H_2), 6.88 – 8.08 (m, 13H, aromatic). – ¹³C NMR (CDCl₃): δ = 20.51 (CH₃), 30.98 (C-6), 45.64 (C-5), 71.62 (C-3), 112.88, 116.60, 126.40, 128.54, 129.14, 130.12, 132.47, 138.10, 140.03, 146.01, 152.31 (all Ar-C), 154.94 (C-7). – MS (EI, 70 eV): m/z (%) = 386 (3) [M]⁺, 387 (1) [M+1]⁺, 268 (17), 309 (5), 236 (100) [M–(NO₂-C₆H₄-N=CH₂)]⁺, 218 (11), 173 (3), 150 (4), 122 (12), 119 (62) [Me-C₆H₄-N=CH₂]⁺, 120 (31), 105 (54), 91 (79), 77 (36). – C₂₃H₂₂N₄O₂ (386.45): calcd. C 71.48, H 5.74, N 14.50; found C 71.40, H 5.68, N 14.44.

3,4,5,6-Tetrahydro-4-(p-bromophenyl)-2-(p-nitrophenyl)-7-phenyl-2H-1,2,4-triazepine (**3b**)

M. p. 188 °C (ethanol). Yield 60 % (reddish crystals). – IR (KBr): v=1615 (C=N), 1529, 1355, 1218, 1110, 875 cm⁻¹. – ¹H NMR (CDCl₃): $\delta=3.32$ (t, 2H, 6- H_2), 3.57 (t, 2H, 5- H_2), 5.15 (s, 2H, 3- H_2), 7.17 – 8.24 (m, 13H, aromatic). – MS (EI, 70 eV): m/z (%) = 451 (14) [M]⁺, 452 (9) [M+1]⁺, 301 (100), 300 (93) [M–(NO₂-C₆H₄-N=CH₂)]⁺, 267 (38) [M–(Br-C₆H₄-N=CH₂)]⁺, 220 (27), 207 (73), 184 (25), 156 (12), 77 (43). – C₂₂H₁₉BrN₄O₂ (451.32): calcd. C 58.55, H 4.24, N 12.41; found C 58.48, H 4.18, N 12.21.

3,4,5,6-Tetrahydro-4-(p-chlorophenyl)-2-(p-nitrophenyl)-7-phenyl-2H-1,2,4-triazepine (3c)

M.p. 190 °C (ethanol). Yield 65 % (reddish crystals). – IR (KBr): v=1617 (C=N), 1537, 1326, 1209, 1100, 855 cm⁻¹. – ¹H NMR (CDCl₃): $\delta=3.28$ (t, 2H, 6- H_2), 3.51 (t, 2H, 5- H_2), 4.86 (s, 2H, 3- H_2), 7.21 – 8.12 (m, 13H, aromatic). – MS (EI, 70 eV): m/z (%) = 406 (14) [M]⁺, 407 (3) [M+1]⁺, 408 (4) [M+2]⁺, 267 (26), 208 (19), 207 (100) [M–(Ph+C₆H₄-NO₂)]⁺, 139 (10), 122 (8), 111 (14), 77 (16). – C₂₂H₁₉ClN₄O₂ (406.86): calcd. C 64.94, H 4.71, N 13.77; found C 64.88, H 4.60, N 13.65.

4-(2,3,5,6-Tetrahydro-2,7-diphenyl-1,2,4-triazepin-4-yl)-benzamide (3e)

M.p. 215 °C (DMF). Yield 53 % (pale-yellow crystals). – IR (KBr): v = 3359 (CONH₂), 1645 (CO), 1610 (C=N), 1517, 1436, 1225, 1142, 879 cm⁻¹. – ¹H NMR ([D₆]DMSO): $\delta = 3.26$ (t, 2H, 6-H₂), 3.87 (t, 2H, 5-H₂), 5.43 (s, 2H, 3-H₂), 6.66 (br. s, 2H, CONH₂), 7.25 – 7.84 (m, 14H, aromatic). – MS (EI, 70 eV): m/z (%) = 370 (4) [M]⁺, 371 (2) [M+1]⁺, 369 (1) [M–1]⁺, 265 (100) [M–PhN=N]⁺, 222 (65), 221 (93), 149 (53), 105 (35), 77 (81). – C₂₃H₂₂N₄O (370.45): calcd. C 74.57, H 5.99, N 15.12; found C 74.50, H 6.01, N 15.04.

3,4,5,6-Tetrahydro-4,7-di(p-hydroxyphenyl)-2-phenyl-2H-1,2,4-triazepine (3f)

M. p. 199 °C (washed with boiling ethanol). Yield 50 % (dark-brown powder). – IR (KBr): v = 3410-3329 (OH), 1610 (C=N), 1523, 1456, 1215, 1112, 956 cm⁻¹. – MS (EI, 70 eV): m/z (%) = 360 (51) [M+1]⁺, 238 (62) [M–(HO-C₆H₄-N=CH₂)]⁺, 173 (58), 121 (33) [HO-C₆H₄-N=CH₂]⁺, 97 (100), 96 (67), 95 (56), 93 (83), 77 (15). – C₂₂H₂₁N₃O₂ (359.42): calcd. C 73.52, H 5.89, N 11.69; found C 73.49, H 5.80, N 11.62.

3,4,5,6-Tetrahydro-4-(p-methoxyphenyl)-2-benzenesulfonyl-7-phenyl-2H-1,2,4-triazepine (4)

A solution of **2b** (0.64 g, 2.5 mmol) and benzenesulfonyl hydrazide (0.43 g, 2.5 mmol) in ethanol (30 mL) was heated on a steam bath for 20 min. After standing at r. t. for 2 h, formalin (37 %, 0.3 mL, 4 mmol) and acetic acid (0.1 mL) were added. The reaction mixture was heated for 5 min, and the product obtained on cooling was filtered and crystallized from ethanol to give 4. M. p. 134 °C. Yield 60 % (pale-yellow crystals). – IR (KBr): v = 1614 (C=N), 1515, 1478, 1362, 1165, 849 cm⁻¹. – ¹H NMR (CDCl₃): δ = 3.22 (t, 2H, 6- H_2), 3.52 (t, 2H, 5-H₂), 3.83 (s, 3H, OMe), 5.51 (s, 2H, 3-H₂), 7.12-7.77 (m, 14H, aromatic). – ¹³C NMR (CDCl₃): δ = 54.67 (OMe), 29.97 (C-6), 46.76(C-5), 72.78 (C-3), 111.98, 116.10, 126.34, 128.14, 129.10, 130.11, 132.17, 138.11, 146.22, 152.41 (all Ar-C), 156.44 (C-7). – MS (EI, 70 eV): m/z (%) = 421 (2) [M]⁺, 422 (1) [M+1]⁺, 252 (40), 251 (100), 173 (48), 174 (18), 142 (30), 107 (16) $[C_6H_4\text{-OMe}]^+$, 97 (8), 77 (59). – C₂₃H₂₃N₃O₃S (421.51): calcd. C 65.54, H 5.50, N 9.97; found C 65.48, H 5.47, N 9.88.

3,4,5,6-Tetrahydro-2,7-diphenyl-3-styryl-4-p-tolyl-2H-1,2,4-triazepine (5)

This compound was obtained from **2a** (0.60 g, 2.5 mmol) and phenylhydrazine (0.27 g, 2.5 mmol) in the manner described for the synthesis of 3a-f, except for the use of cinnamaldehyde (0.40 g, 3 mmol) instead of formaldehyde. The product was crystallized from ethanol to give 5. M. p. 180 °C. Yield 65 % (pale-yellow crystals). – IR (KBr): v = 1610 (C=N), 1577, 1458, 1322, 1222, 1145, 870 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 2.31$ (s, 3H, ArMe), 3.36 (t, 2H, 6- H_2), 3.58 (t, 2H, 5- H_2), 4.87 (d, 2H, 3- H_2), 6.22 (d, 1H, -CH=CH-Ph), 6.61 (d, 1H, -CH=CH-Ph), 6.83-7.68 (m, 19H, aromatic). – ¹³C NMR (CDCl₃): δ = 21.81 (Me), 31.10 (C-6), 47.56 (C-5), 72.18 (C-3), 113.44, 114.36, 117.18, 124.44 (Ph-CH=CH), 127.12, 128.11, 129.12, 131.22 (Ph-CH=CH), 134.44, 138.33, 142.63, 147.41 (all Ar-C), 157.27 (C-7). – MS (EI, 70 eV): m/z (%) = 443 (58) [M]⁺, 442 (50) $[M-1]^+$, 350 (59) $[M-(p-tolyl)]^+$, 264 (55), 131 (29), 119 $(100) [PhC(=NH)Me]^+, 117 (88), 103 (47), 91 (45) [C_6H_4-$
$$\label{eq:Mellin} \begin{split} \text{Mell}^+.-C_{31}\text{H}_{29}\text{N}_3 \text{ (443.58): calcd. C 83.94, H 6.59, N 9.47;}\\ \text{found C 83.88, H 6.56, N 9.39.} \end{split}$$

1-(p-Anisyl)-5-(p-tolylamino)-1-penten-3-one (7)

A mixture of **6** (2.15 g, 8 mmol) and *p*-toluidine (0.85 g, 8 mmol) in 50 % aqueous ethanol (80 mL) was refluxed for 90 min. The product obtained on cooling was filtered and crystallized from ethanol to give **6**. M. p. 110 °C. Yield 85 % (yellow crystals). – IR (KBr): v = 3382 (NH), 1653 (CO), 1605, 1557, 1460, 1319, 1209, 1105, 868 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 2.24$ (s, 3H, Ar*Me*), 2.96 (t, 2H, COC*H*₂CH₂N), 3.52 (t, 2H, COCH₂CH₂N), 3.52 (s, 3H O*Me*), 6.64 (s, 1H, ArN*H*), 6.59 (d, 2H, Ar-CH=CH-CO), 6.93 (d, 2H, Ar-CH=CH-CO), 7.12 – 7.58 (m, 8H, aromatic). – C₁₉H₂₁NO₂ (295.38): calcd. C 77.26, H 7.17, N 4.74; found C 77.18, H 7.10, N 4.69.

7-(4-Methoxystyryl)-3,4,5,6-tetrahydro-2-phenyl-4-p-tolyl-2H-1,2,4-triazepine (8a)

This compound was obtained from equimolar amounts of 6, phenylhydrazine and formaldehyde (5 mmol) in ethanol (40 mL), following the procedure described for the synthesis of 3a-f. The product was crystallized from ethanol to give 8a. M. p. 184 °C. Yield 55 % (yellow crystals). – IR (KBr): v = 1617 (C=N), 1597, 1489, 1308, 1229, 1114, 1082, 847 cm⁻¹. – ¹H NMR (CDCl₃): δ = 2.28 (s, 3H, ArMe), 3.42 (t, 2H, 6-H₂), 3.60 (s, 3H, OMe), 3.94 (t, 2H, 5- H_2), 4.58 (s, 2H, 3- H_2), 6.89 (d, 2H, Ar-CH=CH-), 6.96 (d, 2H, Ar-CH=CH-), 7.02-7.33 (m, 8H, aromatic). – 13 C NMR (CDCl₃): δ = 22.11 (Me), 32.18 (C-6), 48.44 (C-5), 54.23 (OMe), 79.89 (C-3), 113.33, 114.28, 116.88, 127.14, 129.44, 130.10, 136.47 (Ar-CH=CH), 138.33 (Ar-CH=CH), 142.63, 146.41, 156.10, 158.31 (all Ar-C), 154.77 (C-7). – C₂₆H₂₇N₃O (397.51): calcd. C 78.56, H 6.85, N 10.57; found C 78.50, H 6.77, N 10.49.

7-(4-Methoxystyryl)-3,4,5,6-tetrahydro-2-(4-nitrophenyl)3-styryl-4-p-tolyl-2H-1,2,4-triazepine (**8b**)

This compound was obtained from equimolar amounts of **6**, p-nitrophenylhydrazine and cinnamaldehyde (5 mmol) in ethanol (80 mL), in the manner described for the synthesis of $\bf 3a-f$. The product obtained was filtered and washed with boiling ethanol (3 × 15 mL) to give $\bf 8b$. M. p. 265 °C. Yield 33 % (yellow powder). – IR (KBr): v = 1622 (C=N), 1588, 1459, 1326, 1232, 1119, 1066, 865 cm⁻¹. – MS (EI, 70 eV): m/z (%) = 530 (46) [M–Me]⁺, 213 (67), 134 (52), 107 (6), 103 (61), 98 (70) [triazepine unit]⁺, 84 (100) [triazepine unit–(CH₂)]⁺. – $\bf C_{34}\bf H_{32}\bf N_4\bf O_3$ (544.64): calcd. C 74.98, H 5.92, N 10.29; found C 74.91, H 5.89, N 10.21.

2-(Dimethylaminomethyl)-4-(2,3,5,6-tetrahydro-2,7-diphenyl-1,2,4-triazepin-4-yl)phenol (9)

A solution of 3d [16] (1.37 g, 4 mmol), formalin (37 %, 0.4 mL, 5 mmol) and dimethylamine (40%, 0.56 mL, 5 mmol) in ethanol (50 mL) was refluxed for 6 h. After standing at r.t. for 24 h, the product obtained was filtered and crystallized from ethanol to give 9. M.p. 145 °C. -Yield 72 % (colorless crystals). – IR (KBr): v = 3373 (OH), 1605 (C=N), 1588, 1454, 1371, 1271, 1113, 1073 cm⁻¹. -¹H NMR (CDCl₃): $\delta = 2.38$ (s, 6H, N(Me)₂), 3.33 (t, 2H, $6-H_2$), 3.60 (t, 2H, 5- H_2), 3.67 (s, 2H, C H_2 N), 5.17 (s, 2H, 3- H_2), 12.01 (s, 1H, OH), 6.88 – 7.85 (m, 13H, aromatic). – ¹³C NMR (CDCl₃): δ = 30.98 (C-6), 44.21 (C-5), 46.61 (NMe), 62.44 (CH₂N), 74.89 (C-3), 115.32, 117.12, 118.89, 119.42, 120.54, 126.11, 126.29, 128.29, 128.56, 128.84, 139.42, 141.74, 148.33, (all Ar-C), 152.09 (C-7). - MS (EI, 70 eV): m/z (%) = 400 (4) [M]⁺, 401 (1) [M+1]⁺, 250 (59) $[M-(C_6H_3-OH+CH_2Me_2)]^+$, 251 (13), 93 (7), 77 (100), 58 (15) $[CH_2NMe_2]^+$. – $C_{25}H_{28}N_4O$ (400.52): calcd. C 74.97, H 7.05, N 13.99; found C 74.91, H 6.97, N 13.90.

2,6-Bis-(dimethylaminomethyl)-4-(2,3,5,6-tetrahydro-2,7-diphenyl-1,2,4-triazepin-4-yl)phenol (10)

Procedure A: This compound was obtained from equimolar amounts of **9**, formalin and dimethylamine (5 mmol) in ethanol (50 mL), following the procedure described for the synthesis of **9**. The product was crystallized from ethanol to give **10**. M. p. 190 °C. Yield 55 % (colorless crystals). – IR (KBr): v = 3370 (OH), 1612 (C=N), 1577, 1446, 1335, 1221, 1108, 1079 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 2.30$ (s, 12H, 2× NMe_2), 3.34 (t, 2H, 6- H_2), 3.96 (t, 2H, 5- H_2), 4.17 (s, 4H, 2× CH_2 N), 5.31 (s, 2H, 3- H_2), 12.11 (s, 1H, OH), 6.94 – 7.75 (m, 12H, aromatic). – MS (EI, 70 eV): m/z (%) = 457 (6) [M]⁺, 456 (18) [M–1]⁺, 370 (6), 222 (40), 233 (27), 248 (10), 263 (100) [M–(Ph=N-NPh)]⁺, 264 (75), 104 (23), 77 (19), 57 (34). – $C_{28}H_{35}N_5$ O (457.61): calcd. C 73.49, H 7.71, N 15.30; found C 73.41, H 7.69, N 15.22.

Procedure B: A solution of **3d** (1.37 g, 4 mmol), formalin (37 %, 0.8 mL, 10 mmol) and dimethylamine (40 %, 1.12 mL, 10 mmol) in ethanol (50 mL) was refluxed for 8 h. After standing at r.t. for 24 h, the product obtained was filtered and crystallized from ethanol to give **10**. M. p. 190–192 °C. Yield 60 %. The structure was confirmed by a comparison of ¹H NMR data, m. p. and TLC with that from Procedure A.

2,6-[Bis-(piperidin-1-ylmethyl)]-4-(2,3,5,6-tetrahydro-2,7-diphenyl-1,2,4-triazepin-4-yl)phenol (11)

This compound was obtained from **3d** (1.37 g, 4 mmol), formalin (37 %, 1 mL, 12 mmol) and piperidine (1 g, 12 mmol), following the procedure described for the syn-

thesis of 9. The product was crystallized from ethanol to give 11. M. p. 142 °C. Yield 49 % (colorless crystals). -IR (KBr): v = 3377 (OH), 1618 (C=N), 1557, 1426, 1355, 1216, 1100, 1050 cm⁻¹. – ¹H NMR (CDCl₃): $\delta = 1.52$ – 1.67 [m, 12H, $2 \times (3-H_2, 4-H_2, 5-H_2)$ of piperidine], 2.55 (m, 4H, $2-H_2$, $6-H_2$ of piperidine), 3.35 (t, 2H, $6-H_2$), 3.60 $(t, 2H, 5-H_2), 3.68$ (s, 4H, 2× CH₂N), 5.16 (s, 2H, 3- H_2), 11.11 (s, 1H, OH), 6.85 – 7.86 (m, 12H, aromatic). – ¹³C NMR (CDCl₃): δ = 23.92 (C-3, C-4, C-5 of piperidine), 25.72 (C-6), 31.21 (C-5), 46.65 (C-2, C-6 of piperidine), 53.85 (CH₂N), 75.10 (C-3), 115.33, 118.82, 120.54, 126.12, 126.29, 128.28, 128.54, 128.82, 139.45, 142.45, 148.98 (all Ar-C), 150.54 (C-7). – MS (EI, 70 eV): m/z (%) = 537 $(1) [M]^+, 440 (61) [M-(CH_2NC_5H_{10})+H]^+, 250 (100) [M (C_6H_2OH(CH_2NC_5H_{10})_2]^+$, 251 (22), 222 (16), 204 (10), 84 (4) $[NC_5H_{10}]^+$. $-C_{34}H_{43}N_5O$ (537.74): calcd. C 75.94, H 8.06, N 13.02; found C 75.91, H 7.98, N 12.97.

2,3-Dihydro-4-(p-hydroxyphenyl)-1H-1,5-benzodiazepine (13)

A mixture of **1b** (1.14 g, 5 mmol), o-phenylenediamine (0.54 g, 5 mmol) and fused sodium acetate (1.5 g) in absolute ethanol (80 mL) was refluxed for 6 h. The crystalline product was filtered and washed with boiling ethanol-acetone (1:1) to give 13. M.p. 134 °C. Yield 60% (yellow crystals). – IR (KBr): v = 3394 (OH), 3360 (NH), 1611 (C=N), 1513, 1493, 1344, 1144, 810 cm⁻¹. - ¹H NMR (CDCl₃): $\delta = 3.11$ (m, 2H, 3- H_2), 3.54 (m, 2H, 2- H_2), 6.16 (br. s, 1H, NH), 6.84 – 7.83 (m, 8H, aromatic), 8.22 (br. s, 1H, OH). – ¹³C NMR (CDCl₃): δ = 32.16 (C-3), 47.11 (C-2), 113.44, 119.20, 123.24, 127.81, 130.35, 134.45 (all Ar-C), 138.11 (C-5a), 138.55 (C-5b), 168.11 (C-4). – MS (EI, 70 eV): m/z $(\%) = 238 \ (1) \ [\mathrm{M}]^+, \ 222 \ (2), \ 210 \ (4), \ 121 \ (9), \ 120 \ (100),$ 119 (12), 107 (31), 106 (27), 92 (19), 77 (35). – C₁₅H₁₄N₂O (238.28): calcd. C 75.61, H 5.92, N 11.76; found C 75.55, H 5.88, N 11.69.

2,3,6,7-Tetrahydro-1-(β -4-hydroxybenzoylethyl)-5-(4-hydroxybenyl)-1H-1,4-diazepine (15)

A mixture of 1b (1.14 g, 5 mmol) and ethylenediamine (0.3 g, 5 mmol) in 50 % aqueous ethanol (50 mL) was re-

fluxed for 3 h. After standing at r.t. for 24 h, the product obtained was filtered and washed with boiling DMF-ethanol (1:1) to give **15**. M. p. 255 °C. Yield 52% (pale-yellow powder). – IR (KBr): v = 3422 (OH), 1610 (C=N), 1510, 1349, 1036, 1008, 814 cm⁻¹. – ¹H NMR ([D₆] DMSO): $\delta = 2.48$ (m, 2H, 7-H₂), 2.52 (m, 2H, COCH₂CH₂N), 2.64 (m, 2H, 2-H₂), 2.96 (m, 2H, COCH₂CH₂N), 3.28 (m, 2H, 6-H₂), 3.56 (m, 2H, 3-H₂), 6.78–7.77 (m, 8H, aromatic), 10.11 (br. s, 1H, OH). – C₂₀H₂₂N₂O₃ (338.40): calcd. C 70.99, H 6.55, N 8.28; found C 70.91, H 6.49, N 8.20.

3,4,7,8-Tetrahydro-1-(β-4-hydroxybenzoylethyl)-6-(4-hydroxyphenyl)-2H-1,5-diazocine (17)

This compound was obtained from equimolar amounts of **1b** and 1,3-diaminopropane (5 mmol), following the procedure described for the synthesis of **15**. The product obtained was filtered and washed with boiling DMF-ethanol (1:1) to give **17**. M.p. 260 °C. Yield 33 % (yellow powder). – IR (KBr): v = 3940 (OH), 1619 (C=N), 1479, 1407, 1336, 1217, 1102 cm⁻¹. – MS (EI, 70 eV): m/z (%) = 352 (1) [M]⁺, 149 (12) [HO-C₆H₄-COCH₂CH₂]⁺, 121 (6), 119, 110 (7), 109 (10), 111(11), 93 (11), 85 (28), 71 (43), 69 (100) [(C₄H₇)N]⁺, 55 (69). – C₂₁H₂₄N₂O₃ (352.43): calcd. C 71.57, H 6.86, N 7.95; found C 71.50, H 6.79, N 7.87.

1,3-Bis(3-benzoyl-4-hydroxy-4-phenylpiperidin-1-yl)propane (19)

This compound was obtained from **1a** (3.83 g, 18 mmol) and 1,3-diaminopropane (0.33 g, 4.5 mmol), following the procedure described for the synthesis of **15**. The product obtained was filtered and washed with boiling DMF-ethanol (1:1) to give **19**. M. p. 256 °C. Yield 71 % (colorless powder). – IR (KBr): v = 3421 (OH), 1629 (CO), 1600, 1483, 1407, 1216, 1102, 941 cm⁻¹. – MS (EI, 70 eV): m/z (%) = 601 (58) [M–1]⁺, 416 (47), 275 (57), 228 (48), 206 (63), 207 (39), 185 (83), 158 (58), 110 (100), 105 (27), 98 (87), 96 (60), 77 (35). – $C_{39}H_{42}N_2O_4$ (602.76): calcd. C 77.71, H 7.02, N 4.65; found C 77.70, H 6.98, N 4.58.

- [1] M. Tramontini, Synthesis 1973, 703.
- [2] M. Tramontini, L. Angiolini, *Tetrahedron* **1990**, 46, 1791.
- [3] F. Kröhnke, Synthesis 1976, 1.
- [4] E. M. Afsah, M. Hammouda, H. Zoorob, M. M. Khalifa, M. T. Zimaity, Z. Naturforsch. 1990, 45b, 80.
- [5] R. Albonia, B. Insuasty, J. Quiroga, M. Nogueras, H. Meier, Mini Reviews in Organic Chemistry 2004, 1, 387.
- [6] I. K. Moiseev, N. V. Makarova, M. N. Zemtsova, Chem. Heterocycl. Comp. 1999, 35, 637.
- [7] P. M. O'Neill, A. Mukhtar, P. A. Stocks, L. E. Randle, S. Hindley, S. A. Ward, R. C. Storr, J. F. Bickley, I. A. O'Neil, J. L. Maggs, R. H. Hughes, P. A. Winstanley, P. G. Bray, B. Kevin Park, J. Med. Chem. 2003, 46, 4933.
- [8] S. N. Pandeya, S. Smitha, M. Jyoti, S. K. Sridhar, *Acta Pharm.* 2005, 55, 27.

- [9] H. B. Nisbet, J. Chem. Soc. 1938, 1237.
- [10] G. A. Levvy, H. B. Nisbet, J. Chem. Soc. 1938, 1572.
- [11] E. M. Afsah, E. M. Kandeel, M. M. Khalifa, W. M. Hammouda, Z. Naturforsch. 2007, 62b, 540.
- [12] E. M. Afsah, M. A. Metwally, M. M. Khalifa, *Monatsh. Chem.* 1984, 115, 303.
- [13] E. M. Afsah, M. Hammouda, W. S. Hamama, *Monatsh. Chem.* 1985, 116, 851.
- [14] J. T. Plati, W. Wenner, J. Org. Chem. 1949, 14, 543.
- [15] J. T. Plati, R. A. Schmidt, W. Wenner, J. Org. Chem. 1949, 14, 873.
- [16] E. M. Afsah, M. Hammouda, M. M. Khalifa, E. H. Alshahaby, Z. Naturforsch. 2008, 63b, 577.
- [17] G. Roman, E. Comanita, B. Comanita, Acta. Chim. Solv. 2002, 49, 575.
- [18] B. Insuasty, H. Insuasty, J. Quiroga, C. Saitz, C. Jullian, J. Heterocycl. Chem. 2000, 37, 401.
- [19] B. Insuasty, R. Rodriguez, J. Quiroga, R. Abonia,

- C. Saitz, C. Jullian, *Heterocyclic Commun.* **2000**, *6*, 231.
- [20] F. Andreani, R. Andrisano, M. Tramontini, J. Heterocycl. Chem. 1967, 4, 171.
- [21] H. J. Roth, G. Langer, Arch. Pharm. 1968, 301, 736.
- [22] B. D. Tilak, T. Ravindranathan, K. N. Subbaswami, Tetrahedron Lett. 1966, 1959.
- [23] F. Andreani, R. Andrisano, G. Salvadori, J. Chem. Soc. 1971, 1007.
- [24] U. Holzgrabe, Arch. Pharm. 1988, 321, 767.
- [25] U. Holzgrabe, E. Inkmann, Arch. Pharm. 1993, 326, 209.
- [26] M. Hammouda, E. Kandeel, W. Hamama, E. M. Afsah, Arch. Pharm. Res. 1993, 16, 68.
- [27] J. C. Craig, M. Moyle, L. F. Johnson, J. Org. Chem. 1964, 29, 410.
- [28] J. A. Gautier, M. Miocque, D. Q. Quan, Compt. Rend. 1964, 258, 3731; Chem. Abstr. 1964, 61, 602c.